Photonic Neural Networks with Kramers–Kronig Activation
نویسندگان
چکیده
Photonic neural networks (PNNs) are promising to replace conventional deep learning hardware due their potentially higher energy efficiency and computational speed. Other than the fast progress on optical linear transformer, nonlinear activators much less mature. Usually, employ mapping from input amplitude output amplitude, which is limited by high threshold loss, or rely additional bias voltage heterogeneous integration of external circuits. Herein, activation induced Kramers–Kronig relationship proposed, i.e., connection between phase light field, but not purely itself, namely, (KKA). PNN with KKA exhibits capability apparently better activation-free network comparable popular functions like ReLU, Softplus, so on. Moreover, highly programmable cascadable supporting ultra-deep networks. The essence attributed features in relatively low-dimensional RN × N space high-dimensional CN space. Considering besides amplitude–phase coupling, several other parameters wavelength, frequency, polarization, etc., can be also mutually linked. This approach may expand new avenues for activations.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Stochastic Neural Networks with Monotonic Activation Functions
We propose a Laplace approximation that creates a stochastic unit from any smooth monotonic activation function, using only Gaussian noise. This paper investigates the application of this stochastic approximation in training a family of Restricted Boltzmann Machines (RBM) that are closely linked to Bregman divergences. This family, that we call exponential family RBM (Exp-RBM), is a subset of t...
متن کاملDeep Neural Networks with Multistate Activation Functions
We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs p...
متن کاملPrediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کاملUsing Neural Networks with Limited Data to Estimate Manufacturing Cost
Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced photonics research
سال: 2023
ISSN: ['2699-9293']
DOI: https://doi.org/10.1002/adpr.202300062